Hive是大數據領域常用的組件之一,主要是大數據離線數倉的運算,關於Hive的性能調優在日常工作和麵試中是經常涉及的的一個點,因此掌握一些Hive調優是必不可少的一項技能。影響Hive效率的主要有數據傾斜、數據冗餘、job的IO以及不同底層引擎配置情況和Hive本身參數和HiveSQL的執行等因素。本文主要描述在底層引擎為Spark時,經常會用到的、常見的配置參數。
資源參數優化
所謂的Spark資源參數調優,其實主要就是對Spark運行過程中各 個使用資源的地方,通過調節各種參數,來優化資源使用的效率,從而提升Spark作業的執行性能。以下參數就是Spark中主要的資源參數,每個參數都對 應著作業運行原理中的某個部分,我們同時也給出了一個調優的參考值。
num-executors
參數說明:該參數用於設置Spark作業總共要用多少個Executor進程來執行。Driver在向YARN集群管理器申請資源時,YARN集 群管理器會儘可能按照你的設置來在集群的各個工作節點上,啟動相應數量的Executor進程。這個參數非常之重要,如果不設置的話,默認只會給你啟動少 量的Executor進程,此時你的Spark作業的運行速度是非常慢的。
參數調優建議:每個Spark作業的運行一般設置50~100個左右的Executor進程比較合適,設置太少或太多的Executor進程都不好。設置的太少,無法充分利用集群資源;設置的太多的話,大部分隊列可能無法給予充分的資源。
executor-memory
參數說明:該參數用於設置每個Executor進程的內存。Executor內存的大小,很多時候直接決定了Spark作業的性能,而且跟常見的JVM OOM異常,也有直接的關聯。
參數調優建議:每個Executor進程的內存設置4G~8G較為合適。但是這只是一個參考值,具體的設置還是得根據不同部門的資源隊列來定。可 以看看自己團隊的資源隊列的最大內存限制是多少,num-executors乘以executor-memory,就代表了你的Spark作業申請到的總 內存量(也就是所有Executor進程的內存總和),這個量是不能超過隊列的最大內存量的。此外,如果你是跟團隊裡其他人共享這個資源隊列,那麼申請的 總內存量最好不要超過資源隊列最大總內存的1/3~1/2,避免你自己的Spark作業佔用了隊列所有的資源,導致別的同學的作業無法運行。
executor-cores
參數說明:該參數用於設置每個Executor進程的CPU core數量。這個參數決定了每個Executor進程並行執行task線程的能力。因為每個CPU core同一時間只能執行一個task線程,因此每個Executor進程的CPU core數量越多,越能夠快速地執行完分配給自己的所有task線程。
參數調優建議:Executor的CPU core數量設置為2~4個較為合適。同樣得根據不同部門的資源隊列來定,可以看看自己的資源隊列的最大CPU core限制是多少,再依據設置的Executor數量,來決定每個Executor進程可以分配到幾個CPU core。同樣建議,如果是跟他人共享這個隊列,那麼num-executors * executor-cores不要超過隊列總CPU core的1/3~1/2左右比較合適,也是避免影響其他同學的作業運行。
driver-memory
參數說明:該參數用於設置Driver進程的內存。
參數調優建議:Driver的內存通常來說不設置,或者設置1G左右應該就夠了。唯一需要注意的一點是,如果需要使用collect算子將RDD的數據全部拉取到Driver上進行處理,那麼必須確保Driver的內存足夠大,否則會出現OOM內存溢出的問題。
spark.default.parallelism
參數說明:該參數用於設置每個stage的默認task數量。這個參數極為重要,如果不設置可能會直接影響你的Spark作業性能。
參數調優建議:Spark作業的默認task數量為500~1000個較為合適。很多同學常犯的一個錯誤就是不去設置這個參數,那麼此時就會導致 Spark自己根據底層HDFS的block數量來設置task的數量,默認是一個HDFS block對應一個task。通常來說,Spark默認設置的數量是偏少的(比如就幾十個task),如果task數量偏少的話,就會導致你前面設置好的 Executor的參數都前功盡棄。試想一下,無論你的Executor進程有多少個,內存和CPU有多大,但是task只有1個或者10個,那麼90% 的Executor進程可能根本就沒有task執行,也就是白白浪費了資源!因此Spark官網建議的設置原則是,設置該參數為num- executors * executor-cores的2~3倍較為合適,比如Executor的總CPU core數量為300個,那麼設置1000個task是可以的,此時可以充分地利用Spark集群的資源。
spark.storage.memoryFraction
參數說明:該參數用於設置RDD持久化數據在Executor內存中能佔的比例,默認是0.6。也就是說,默認Executor 60%的內存,可以用來保存持久化的RDD數據。根據你選擇的不同的持久化策略,如果內存不夠時,可能數據就不會持久化,或者數據會寫入磁盤。
參數調優建議:如果Spark作業中,有較多的RDD持久化操作,該參數的值可以適當提高一些,保證持久化的數據能夠容納在內存中。避免內存不夠 緩存所有的數據,導致數據只能寫入磁盤中,降低了性能。但是如果Spark作業中的shuffle類操作比較多,而持久化操作比較少,那麼這個參數的值適 當降低一些比較合適。此外,如果發現作業由於頻繁的gc導致運行緩慢(通過spark web ui可以觀察到作業的gc耗時),意味著task執行用戶代碼的內存不夠用,那麼同樣建議調低這個參數的值。
spark.shuffle.memoryFraction
參數說明:該參數用於設置shuffle過程中一個task拉取到上個stage的task的輸出後,進行聚合操作時能夠使用的Executor 內存的比例,默認是0.2。也就是說,Executor默認只有20%的內存用來進行該操作。shuffle操作在進行聚合時,如果發現使用的內存超出了 這個20%的限制,那麼多餘的數據就會溢寫到磁盤文件中去,此時就會極大地降低性能。
參數調優建議:如果Spark作業中的RDD持久化操作較少,shuffle操作較多時,建議降低持久化操作的內存佔比,提高shuffle操作 的內存佔比比例,避免shuffle過程中數據過多時內存不夠用,必須溢寫到磁盤上,降低了性能。此外,如果發現作業由於頻繁的gc導致運行緩慢,意味著 task執行用戶代碼的內存不夠用,那麼同樣建議調低這個參數的值。
資源參數的調優,沒有一個固定的值,需要同學們根據自己的實際情況(包括Spark作業中的shuffle操作數量、RDD持久化操作數量以及spark web ui中顯示的作業gc情況),同時參考本篇文章中給出的原理以及調優建議,合理地設置上述參數。
資源參數參考示例
以下是一份spark-submit命令的示例,大家可以參考一下,並根據自己的實際情況進行調節:
./bin/spark-submit \ --master yarn-cluster \ --num-executors 100 \ --executor-memory 6G \ --executor-cores 4 \ --driver-memory 1G \ --conf spark.default.parallelism=1000 \ --conf spark.storage.memoryFraction=0.5 \ --conf spark.shuffle.memoryFraction=0.3 \
瞭解更多
大數據運維服務