大數據

Machine Learning Vocabulary

A few years ago, I was studying Machine Learning in school. In that time, I feel that playing Machine Learning is the best thing in the world, but what's the most unacceptable is that when it's applied to reality, it's much more complicated than I could think.

There are some contents for beginners:

image.png

Supervised Learning 監督學習

Unsupervised Learning 無監督學習

Reinforcement Learning 強化學習

 

Top 10 machine learning algorithms  10大機器學習算法

 

Decision tree   決策樹/判定樹

K-Means Clustering K –均值聚類

K-Nearest Neighbor Algorithm/KNN        K近鄰算法

Support Vector Machine/SVM          支持向量機

Naive Bayes Classifier       樸素貝葉斯分類器

Gradient Boost 和 Adaboost 算法

Random Forest Algorithm        隨機森林算法

Neural Network       神經網絡

Markov Chains馬爾可夫鏈

Logistic Regression邏輯迴歸

 

數據集Data Set

訓練集 train set 

驗證集validation set

測試集 test set

 

Training Models 訓練模型

Loss Function損失函數

Optimization Algorithms 優化算法

Gradient Descent Method 梯度下降法

Newtonian method 牛頓法

Momentum動量

Nesterov Momentum

Adagrad  Adaptive Gradient

Adam   Adaptive Moment Estimation

 

Estimate model 評估模型

Accuracy 準確率

Precision 精確率

Recall 召回率

True Positive Rate 真陽性率

Mean Square Error (MSE, RMSE)         平均方差

Absolute Error (MAE, RAE)  絕對誤差

The above is just the basic content about machine learning.

Stay hungry, Stay foolish !

感謝關注,謝謝

091d00017074f3cd95124e72fe4d461.jpg

Leave a Reply

Your email address will not be published. Required fields are marked *