開發與維運

PostgreSQL Oracle 兼容性之 – performance insight – AWS performance insight 理念與實現解讀 – 珍藏級

PostgreSQL Oracle 兼容性之 - performance insight - AWS performance insight 理念與實現解讀 - 珍藏級

作者

digoal

日期

2019-01-25

標籤

PostgreSQL , perf insight , 等待事件 , 採樣 , 發現問題 , Oracle 兼容性


背景

通常普通的監控會包括系統資源的監控:

cpu    
    
io    
    
內存    
  
網絡  

等,但是僅憑資源的監控,當問題發生時,如何快速的定位到問題在哪裡?需要更高級的監控:

更高級的監控方法通常是從數據庫本身的特性觸發,但是需要對數據庫具備非常深刻的理解,才能做出好的監控和診斷系統。屬於專家型或叫做經驗型的監控和診斷系統。

[《[未完待續] PostgreSQL 一鍵診斷項 - 珍藏級》](https://github.com/digoal/blog/blob/master/201806/20180613_05.md)

《PostgreSQL 實時健康監控 大屏 - 低頻指標 - 珍藏級》

《PostgreSQL 實時健康監控 大屏 - 高頻指標(服務器) - 珍藏級》

《PostgreSQL 實時健康監控 大屏 - 高頻指標 - 珍藏級》

《PostgreSQL pgmetrics - 多版本、健康監控指標採集、報告》

《PostgreSQL pg_top pgcenter - 實時top類工具》

《PostgreSQL、Greenplum 日常監控 和 維護任務 - 最佳實踐》

《PostgreSQL 如何查找TOP SQL (例如IO消耗最高的SQL) (包含SQL優化內容) - 珍藏級》

《PostgreSQL 鎖等待監控 珍藏級SQL - 誰堵塞了誰》

然而數據庫在不斷的演進,經驗型的診斷系統好是好,但是不通用,有沒有更加通用,有效的發現系統問題的方法?

AWS與Oracle perf insight的思路非常不錯,實際上就是等待事件的統計追蹤,作為性能診斷的方法。

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

《AWS performance insight》

簡單來說就是對系統不停的打點,例如每秒一個採樣,僅記錄這一秒數據庫活躍的會話(包括等待中的會話),等待事件,QUERY,時間,用戶,數據庫。這幾個指標。

活躍度會話,不管是在耗費CPU,還是在等待(鎖,IO)或者其他,實際上都是佔用了資源的。可以算出平均的活躍會話(例如10秒的平均值,5秒的平均值)(avg active sessions)。

這個avg active sessions是一個值,這個值和數據庫實例的CPU個數進行比較,就可以衡量出系統是否存在瓶頸(當avg active sessions超過CPU個數時,說明存在瓶頸)。

當某個時間窗口存在瓶頸,瓶頸在哪裡,則可以通過這個時間窗口內的打點明細,進行統計。等待事件,QUERY,用戶,數據庫。

PostgreSQL打點的方法也很多:

1、(推薦)通過pg_stat_activity 內存中的動態視圖獲取,每秒取一次ACTIVE的內容(例如:會話ID,等待事件,QUERY,時間,用戶,數據庫)。

https://www.postgresql.org/docs/11/monitoring-stats.html#MONITORING-STATS-VIEWS

2、(不推薦)開啟審計日誌,在審計日誌中獲取,這個在高併發系統中,不太好用。並且審計日誌是在結束時打印,一個QUERY的中間執行過程並不完全是佔用CPU或其他資源的,所以審計日誌獲取的信息對於perf insight並沒有什麼效果。

perf insight的入門門檻低,可以擺平很多問題,在出現問題時快速定位到問題SQL,問題的等待事件在哪裡。結合經驗型的監控,可以構建PG非常強大的監控、診斷、優化體系。

perf insight 實現講解

pic

pic

pic

pic

pic

pic

pic

舉例1

會話1

postgres=# begin;      
BEGIN      
postgres=# lock table abc in access exclusive mode ;      
LOCK TABLE      

會話2

postgres=# select * from abc;      

從pg_stat_activity獲取狀態,可以看到會話2在等待,會話處於active狀態,這種消耗需要被記錄到avg active session中,用來評估資源消耗指標。

postgres=# select now(),state,datname,usename,wait_event_type,wait_event,query from pg_stat_activity where state in ('active', 'fastpath function call');      
              now              | state  | datname  | usename  | wait_event_type | wait_event |                                           query                                                  
-------------------------------+--------+----------+----------+-----------------+------------+--------------------------------------------------------------------------------------------      
 2019-01-25 21:17:28.540264+08 | active | postgres | postgres |                 |            | select datname,usename,query,state,wait_event_type,wait_event,now() from pg_stat_activity;      
 2019-01-25 21:17:28.540264+08 | active | postgres | postgres | Lock            | relation   | select * from abc;      
(2 rows)      

舉例2

使用pgbench壓測數據庫,每秒打點,後期進行可視化展示

pgbench -i -s 100      

1、壓測只讀

pgbench -M prepared -n -r -P 1 -c 64 -j 64 -T 300 -S      

2、查看壓測時的活躍會話狀態

postgres=#     
select now()::timestamptz(0),state,    
datname,usename,wait_event_type,wait_event,query     
from pg_stat_activity     
where state in     
('active', 'fastpath function call')     
and pid<>pg_backend_pid();      
    
         now         | state  | datname  | usename  | wait_event_type | wait_event |                         query                               
---------------------+--------+----------+----------+-----------------+------------+-------------------------------------------------------      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres | Client          | ClientRead | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
 2019-01-25 21:28:52 | active | postgres | postgres |                 |            | SELECT abalance FROM pgbench_accounts WHERE aid = $1;      
(46 rows)      

3、為了方便統計,可以在本地建表,用於收集pg_stat_activity的內容,在實際的生產中,可以把這個信息讀走,存到其他地方(例如專用於監控的其他數據庫)。

postgres=# create unlogged table perf_insight as     
select now()::timestamptz(0) as ts,    
extract(epoch from backend_start)||'.'||pid as sessid,    
state,datname,usename,    
wait_event_type||'_'||wait_event as waiting ,    
query from     
pg_stat_activity     
where state in     
('active', 'fastpath function call')     
and pid<>pg_backend_pid();      
    
SELECT 48      

4、試著寫入當時pg_stat_activity狀態

postgres=#     
    
insert into perf_insight     
select now()::timestamptz(0),    
extract(epoch from backend_start)||'.'||pid,    
state,datname,    
usename,wait_event_type||'_'||wait_event,    
query from pg_stat_activity     
where state in ('active', 'fastpath function call')     
and pid<>pg_backend_pid();      
    
INSERT 0 42      

5、使用psql watch,每秒打一個點

postgres=# \watch 1      

6、只讀壓測,壓測結果,130萬QPS

pgbench -M prepared -n -r -P 1 -c 64 -j 64 -T 300 -S      
      
    
    
transaction type: <builtin: select only>      
scaling factor: 100      
query mode: prepared      
number of clients: 64      
number of threads: 64      
duration: 300 s      
number of transactions actually processed: 390179555      
latency average = 0.049 ms      
latency stddev = 0.026 ms      
tps = 1300555.237752 (including connections establishing)      
tps = 1300584.885231 (excluding connections establishing)      
statement latencies in milliseconds:      
         0.001  \set aid random(1, 100000 * :scale)      
         0.049  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;      

7、接下來,開啟一個讀寫壓測,9.4萬TPS(yue 47萬qps)

pgbench -M prepared -n -r -P 1 -c 64 -j 64 -T 300       
      
      
      
transaction type: <builtin: TPC-B (sort of)>      
scaling factor: 100      
query mode: prepared      
number of clients: 64      
number of threads: 64      
duration: 300 s      
number of transactions actually processed: 28371829      
latency average = 0.677 ms      
latency stddev = 0.413 ms      
tps = 94569.412707 (including connections establishing)      
tps = 94571.934011 (excluding connections establishing)      
statement latencies in milliseconds:      
         0.002  \set aid random(1, 100000 * :scale)      
         0.001  \set bid random(1, 1 * :scale)      
         0.001  \set tid random(1, 10 * :scale)      
         0.001  \set delta random(-5000, 5000)      
         0.045  BEGIN;      
         0.108  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;      
         0.069  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;      
         0.091  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;      
         0.139  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;      
         0.068  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);      
         0.153  END;      

8、perf insight 可視化需要的素材

時間、狀態、會話ID、數據庫名、用戶名、等待事件、查詢

當然,我們可以再細化,例如增加會話ID字段,可以針對一個會話來進行展示和統計。

postgres=# \d perf_insight     
                   Unlogged table "public.perf_insight"    
 Column  |              Type              |     
---------+--------------------------------+-    
 ts      | timestamp(0) with time zone    | 時間戳    
 sessid  | text                           | 會話ID    
 state   | text                           | 狀態    
 datname | name                           | 數據庫    
 usename | name                           | 用戶    
 waiting | text                           | 等待事件    
 query   | text                           | SQL語句    

9、查看perf insight素材內容

postgres=# select * from perf_insight limit 10;     
         ts          |         sessid         | state  | datname  | usename  |         waiting          |                                query                                     
---------------------+------------------------+--------+----------+----------+--------------------------+----------------------------------------------------------------------    
 2019-01-26 09:43:28 | 1548467007.4805.32968  | active | postgres | postgres | Lock_transactionid       | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;    
 2019-01-26 09:43:28 | 1548467007.47991.32966 | active | postgres | postgres | Client_ClientRead        | END;    
 2019-01-26 09:43:28 | 1548467007.48362.32979 | active | postgres | postgres | Lock_transactionid       | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;    
 2019-01-26 09:43:28 | 1548467007.48388.32980 | active | postgres | postgres | Lock_tuple               | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;    
 2019-01-26 09:43:28 | 1548467007.48329.32978 | active | postgres | postgres | Lock_transactionid       | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;    
 2019-01-26 09:43:28 | 1548467007.48275.32976 | active | postgres | postgres | Lock_tuple               | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;    
 2019-01-26 09:43:28 | 1548467007.48107.32970 | active | postgres | postgres | Lock_transactionid       | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;    
 2019-01-26 09:43:28 | 1548467007.48243.32975 | active | postgres | postgres | Lock_transactionid       | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;    
 2019-01-26 09:43:28 | 1548467007.48417.32981 | active | postgres | postgres | IPC_ProcArrayGroupUpdate | SELECT abalance FROM pgbench_accounts WHERE aid = $1;    
 2019-01-26 09:43:28 | 1548467007.48448.32982 | active | postgres | postgres | Lock_tuple               | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;    
(10 rows)     

10、查看在這段時間中,有多少種等待事件

postgres=# select distinct waiting from perf_insight ;      
         waiting                
--------------------------      
 LWLock_wal_insert      
       
 LWLock_XidGenLock      
 Lock_extend      
 LWLock_ProcArrayLock      
 Lock_tuple      
 Lock_transactionid      
 LWLock_lock_manager      
 Client_ClientRead      
 IPC_ProcArrayGroupUpdate      
 LWLock_buffer_content      
 IPC_ClogGroupUpdate      
 LWLock_CLogControlLock      
 IO_DataFileExtend      
(14 rows)      

perf insight 可視化,統計

採集粒度為1秒,可以對n秒的打點求平均值(分不同維度),得到可視化圖形:

1、總avg active sessions ,用於告警。

2、其他維度,用於分析造成性能瓶頸問題的權重:

2.1、等待事件維度(NULL表示無等待,純CPU time) avg active sessions

2.2、query 維度 avg active sessions

2.3、數據庫維度 avg active sessions

2.4、用戶維度 avg active sessions

如何判斷問題:

例如,對於一個64線程的系統:

avg active sessions 在64以下時,可以認為是沒有問題的。

1 總 avg active sessions,用於告警。

5秒統計間隔。

select     
  coalesce(t1.ts, t2.ts) ts,     
  coalesce(avg_active_sessions,0) avg_active_sessions       
from       
(    
select     
  to_timestamp((extract(epoch from ts))::int8/5*5) ts,     
  count(*)/5::float8 avg_active_sessions     
from perf_insight     
group by 1    
) t1      
full outer join       
(select     
  generate_series(    
    to_timestamp((extract(epoch from min(ts)))::int8/5*5),    
    to_timestamp((extract(epoch from max(ts)))::int8/5*5),    
    interval '5 s'    
  ) ts     
from perf_insight    
) t2      
on (t1.ts=t2.ts);      
      
      
           ts           | avg_active_sessions       
------------------------+---------------------      
 2019-01-26 05:39:20+08 |                14.2      
 2019-01-26 05:39:25+08 |                30.4      
 2019-01-26 05:39:30+08 |                35.8      
 2019-01-26 05:39:35+08 |                41.8      
 2019-01-26 05:39:40+08 |                38.6      
 2019-01-26 05:39:45+08 |                38.2      
 2019-01-26 05:39:50+08 |                34.6      
 2019-01-26 05:39:55+08 |                35.6      
 2019-01-26 05:40:00+08 |                42.4      
 2019-01-26 05:40:05+08 |                36.8      
 2019-01-26 05:40:10+08 |                36.2      
 2019-01-26 05:40:15+08 |                39.4      
 2019-01-26 05:40:20+08 |                  40      
 2019-01-26 05:40:25+08 |                35.8      
 2019-01-26 05:40:30+08 |                37.2      
 2019-01-26 05:40:35+08 |                36.4      
 2019-01-26 05:40:40+08 |                40.6      
 2019-01-26 05:40:45+08 |                39.2      
 2019-01-26 05:40:50+08 |                36.6      
 2019-01-26 05:40:55+08 |                37.4      
 2019-01-26 05:41:00+08 |                  38      
 2019-01-26 05:41:05+08 |                38.6      
 2019-01-26 05:41:10+08 |                38.4      
 2019-01-26 05:41:15+08 |                40.4      
 2019-01-26 05:41:20+08 |                35.8      
 2019-01-26 05:41:25+08 |                40.6      
 2019-01-26 05:41:30+08 |                39.4      
 2019-01-26 05:41:35+08 |                37.4      
 2019-01-26 05:41:40+08 |                36.6      
 2019-01-26 05:41:45+08 |                39.6      
 2019-01-26 05:41:50+08 |                36.2      
 2019-01-26 05:41:55+08 |                37.4      
 2019-01-26 05:42:00+08 |                37.8      
 2019-01-26 05:42:05+08 |                  39      
 2019-01-26 05:42:10+08 |                36.2      
 2019-01-26 05:42:15+08 |                  37      
 2019-01-26 05:42:20+08 |                36.4      
 2019-01-26 05:42:25+08 |                  36      
 2019-01-26 05:42:30+08 |                37.6      
 2019-01-26 05:42:35+08 |                   0      
 2019-01-26 05:42:40+08 |                   0      
 2019-01-26 05:42:45+08 |                   0      
 2019-01-26 05:42:50+08 |                 8.4      
 2019-01-26 05:42:55+08 |                40.6      
 2019-01-26 05:43:00+08 |                42.4      
 2019-01-26 05:43:05+08 |                37.4      
 2019-01-26 05:43:10+08 |                44.8      
 2019-01-26 05:43:15+08 |                36.2      
 2019-01-26 05:43:20+08 |                39.6      
 2019-01-26 05:43:25+08 |                41.4      
 2019-01-26 05:43:30+08 |                34.2      
 2019-01-26 05:43:35+08 |                41.8      
 2019-01-26 05:43:40+08 |                37.4      
 2019-01-26 05:43:45+08 |                30.2      
 2019-01-26 05:43:50+08 |                36.6      
 2019-01-26 05:43:55+08 |                  36      
 2019-01-26 05:44:00+08 |                33.8      
 2019-01-26 05:44:05+08 |                37.8      
 2019-01-26 05:44:10+08 |                39.2      
 2019-01-26 05:44:15+08 |                36.6      
 2019-01-26 05:44:20+08 |                39.8      
 2019-01-26 05:44:25+08 |                35.2      
 2019-01-26 05:44:30+08 |                35.8      
 2019-01-26 05:44:35+08 |                42.8      
 2019-01-26 05:44:40+08 |                40.8      
 2019-01-26 05:44:45+08 |                39.4      
 2019-01-26 05:44:50+08 |                  40      
 2019-01-26 05:44:55+08 |                40.2      
 2019-01-26 05:45:00+08 |                41.2      
 2019-01-26 05:45:05+08 |                41.6      
 2019-01-26 05:45:10+08 |                40.6      
 2019-01-26 05:45:15+08 |                33.8      
 2019-01-26 05:45:20+08 |                35.8      
 2019-01-26 05:45:25+08 |                42.2      
 2019-01-26 05:45:30+08 |                37.8      
 2019-01-26 05:45:35+08 |                37.6      
 2019-01-26 05:45:40+08 |                40.2      
 2019-01-26 05:45:45+08 |                37.4      
 2019-01-26 05:45:50+08 |                38.2      
 2019-01-26 05:45:55+08 |                39.6      
 2019-01-26 05:46:00+08 |                41.6      
 2019-01-26 05:46:05+08 |                  36      
 2019-01-26 05:46:10+08 |                34.6      
 2019-01-26 05:46:15+08 |                37.8      
 2019-01-26 05:46:20+08 |                40.8      
 2019-01-26 05:46:25+08 |                  42      
 2019-01-26 05:46:30+08 |                36.4      
 2019-01-26 05:46:35+08 |                44.6      
 2019-01-26 05:46:40+08 |                38.8      
 2019-01-26 05:46:45+08 |                  35      
 2019-01-26 05:46:50+08 |                36.2      
 2019-01-26 05:46:55+08 |                37.2      
 2019-01-26 05:47:00+08 |                  36      
 2019-01-26 05:47:05+08 |                38.2      
 2019-01-26 05:47:10+08 |                37.2      
 2019-01-26 05:47:15+08 |                42.8      
 2019-01-26 05:47:20+08 |                  32      
 2019-01-26 05:47:25+08 |                  41      
 2019-01-26 05:47:30+08 |                  44      
 2019-01-26 05:47:35+08 |                37.4      
 2019-01-26 05:47:40+08 |                36.2      
 2019-01-26 05:47:45+08 |                  39      
 2019-01-26 05:47:50+08 |                27.8      
(103 rows)      

10秒統計間隔的SQL

select     
  coalesce(t1.ts,t2.ts) ts,     
  coalesce(avg_active_sessions,0) avg_active_sessions       
from       
(    
select     
  to_timestamp((extract(epoch from ts))::int8/10*10) ts,     
  count(*)/10::float8 avg_active_sessions     
from perf_insight     
group by 1    
) t1      
full outer join       
(    
select     
  generate_series(    
    to_timestamp((extract(epoch from min(ts)))::int8/10*10),    
    to_timestamp((extract(epoch from max(ts)))::int8/10*10),    
    interval '10 s'    
  ) ts     
from perf_insight    
) t2      
on (t1.ts=t2.ts);      
      
      
           ts           | avg_active_sessions       
------------------------+---------------------      
 2019-01-26 05:39:20+08 |                22.3      
 2019-01-26 05:39:30+08 |                38.8      
 2019-01-26 05:39:40+08 |                38.4      
 2019-01-26 05:39:50+08 |                35.1      
 2019-01-26 05:40:00+08 |                39.6      
 2019-01-26 05:40:10+08 |                37.8      
 2019-01-26 05:40:20+08 |                37.9      
 2019-01-26 05:40:30+08 |                36.8      
 2019-01-26 05:40:40+08 |                39.9      
 2019-01-26 05:40:50+08 |                  37      
 2019-01-26 05:41:00+08 |                38.3      
 2019-01-26 05:41:10+08 |                39.4      
 2019-01-26 05:41:20+08 |                38.2      
 2019-01-26 05:41:30+08 |                38.4      
 2019-01-26 05:41:40+08 |                38.1      
 2019-01-26 05:41:50+08 |                36.8      
 2019-01-26 05:42:00+08 |                38.4      
 2019-01-26 05:42:10+08 |                36.6      
 2019-01-26 05:42:20+08 |                36.2      
 2019-01-26 05:42:30+08 |                18.8      
 2019-01-26 05:42:40+08 |                   0      
 2019-01-26 05:42:50+08 |                24.5      
 2019-01-26 05:43:00+08 |                39.9      
 2019-01-26 05:43:10+08 |                40.5      
 2019-01-26 05:43:20+08 |                40.5      
 2019-01-26 05:43:30+08 |                  38      
 2019-01-26 05:43:40+08 |                33.8      
 2019-01-26 05:43:50+08 |                36.3      
 2019-01-26 05:44:00+08 |                35.8      
 2019-01-26 05:44:10+08 |                37.9      
 2019-01-26 05:44:20+08 |                37.5      
 2019-01-26 05:44:30+08 |                39.3      
 2019-01-26 05:44:40+08 |                40.1      
 2019-01-26 05:44:50+08 |                40.1      
 2019-01-26 05:45:00+08 |                41.4      
 2019-01-26 05:45:10+08 |                37.2      
 2019-01-26 05:45:20+08 |                  39      
 2019-01-26 05:45:30+08 |                37.7      
 2019-01-26 05:45:40+08 |                38.8      
 2019-01-26 05:45:50+08 |                38.9      
 2019-01-26 05:46:00+08 |                38.8      
 2019-01-26 05:46:10+08 |                36.2      
 2019-01-26 05:46:20+08 |                41.4      
 2019-01-26 05:46:30+08 |                40.5      
 2019-01-26 05:46:40+08 |                36.9      
 2019-01-26 05:46:50+08 |                36.7      
 2019-01-26 05:47:00+08 |                37.1      
 2019-01-26 05:47:10+08 |                  40      
 2019-01-26 05:47:20+08 |                36.5      
 2019-01-26 05:47:30+08 |                40.7      
 2019-01-26 05:47:40+08 |                37.6      
 2019-01-26 05:47:50+08 |                13.9      
(52 rows)      

2 具體到一個時間段內,是什麼問題

例如2019-01-26 05:45:20+08,這個時間區間,性能問題鑽取:

1、數據庫維度的資源消耗時間佔用,判定哪個數據庫佔用的資源最多

postgres=#     
    
select     
  datname,    
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)   -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 05:45:20+08'   -- 問題時間點    
group by 1     
order by cnt desc;      
    
    
 datname  | cnt       
----------+-----      
 postgres |  39      
(1 row)      

2、用戶維度的資源消耗時間佔用,判定哪個用戶佔用的資源最多

postgres=#     
    
select     
  usename,    
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)   -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 05:45:20+08'   -- 問題時間點    
group by 1     
order by cnt desc;      
    
    
 usename  | cnt       
----------+-----      
 postgres |  39      
(1 row)      

3、等待事件維度的資源消耗時間佔用,判定問題集中在哪些等待事件上,可以針對性的優化、加資源。

postgres=#     
    
select     
  coalesce(waiting, 'CPU_TIME') waiting,    
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)   -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 05:45:20+08'   -- 問題時間點    
group by 1     
order by cnt desc;      
    
    
         waiting          | cnt        
--------------------------+------      
 CPU_TIME                 | 15.3      
 Client_ClientRead        | 10.6      
 IPC_ProcArrayGroupUpdate |  6.1      
 Lock_transactionid       |  5.4      
 Lock_tuple               |  0.5      
 LWLock_wal_insert        |  0.3      
 LWLock_ProcArrayLock     |  0.2      
 LWLock_buffer_content    |  0.2      
 IPC_ClogGroupUpdate      |  0.2      
 LWLock_lock_manager      |  0.1      
 LWLock_CLogControlLock   |  0.1      
(11 rows)      

4、SQL維度的資源消耗時間佔用,判定問題集中在哪些SQL上,可以針對性的優化。

postgres=#     
    
select     
  query,    
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)  -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 05:45:20+08'   -- 問題時間點    
group by 1     
order by cnt desc;       
    
                                                 query                                                 | cnt        
-------------------------------------------------------------------------------------------------------+------      
 END;                                                                                                  | 11.5      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | 11.3      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  |  6.8      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   |  4.5      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); |  2.3      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 |  2.1      
 BEGIN;                                                                                                |  0.5      
(7 rows)      

5、單條QUERY在不同等待事件上的資源消耗時間佔用,判定問題SQL的突出等待事件,可以針對性的優化、加資源。

postgres=#     
    
select     
  query,     
  coalesce(waiting, 'CPU_TIME') waiting,     
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)  -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 05:45:20+08'  -- 問題時間點    
group by 1,2     
order by 1,cnt desc;     
    
    
                                                 query                                                 |         waiting          | cnt       
-------------------------------------------------------------------------------------------------------+--------------------------+-----      
 BEGIN;                                                                                                | Client_ClientRead        | 0.3      
 BEGIN;                                                                                                | CPU_TIME                 | 0.2      
 END;                                                                                                  | CPU_TIME                 | 4.6      
 END;                                                                                                  | IPC_ProcArrayGroupUpdate | 3.7      
 END;                                                                                                  | Client_ClientRead        | 3.1      
 END;                                                                                                  | IPC_ClogGroupUpdate      | 0.1      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | CPU_TIME                 |   1      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | Client_ClientRead        | 0.6      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | IPC_ProcArrayGroupUpdate | 0.6      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | IPC_ClogGroupUpdate      | 0.1      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | CPU_TIME                 | 1.2      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | Client_ClientRead        | 0.6      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | Lock_transactionid       | 0.3      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | CPU_TIME                 | 3.8      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | Client_ClientRead        | 2.9      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | LWLock_wal_insert        | 0.1      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | Lock_transactionid       |   4      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | CPU_TIME                 | 2.5      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | Client_ClientRead        | 2.1      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | IPC_ProcArrayGroupUpdate | 1.7      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | Lock_tuple               | 0.5      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | LWLock_buffer_content    | 0.2      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | LWLock_ProcArrayLock     | 0.2      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | LWLock_wal_insert        | 0.1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | CPU_TIME                 |   2      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | Lock_transactionid       | 1.1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | Client_ClientRead        |   1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | IPC_ProcArrayGroupUpdate | 0.1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | LWLock_CLogControlLock   | 0.1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | LWLock_lock_manager      | 0.1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | LWLock_wal_insert        | 0.1      
(31 rows)      

6、點中單條QUERY,在不同等待事件上的資源消耗時間佔用,判定問題SQL的突出等待事件,可以針對性的優化、加資源。

通過4,發現佔用最多的是END這條SQL,那麼這條SQL的等待時間分佈如何?是什麼等待引起的?

postgres=#     
    
select     
  coalesce(waiting, 'CPU_TIME') waiting,    
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)   -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 05:45:20+08'   -- 問題時間點    
  and query='END;'     
group by 1     
order by cnt desc;      
    
    
         waiting          | cnt       
--------------------------+-----      
 CPU_TIME                 | 4.6      
 IPC_ProcArrayGroupUpdate | 3.7      
 Client_ClientRead        | 3.1      
 IPC_ClogGroupUpdate      | 0.1      
(4 rows)      

3 開啟一個可以造成性能問題的壓測場景,通過perf insight直接發現問題

1、開啟640個併發,讀寫壓測,由於數據量小,併發高,直接導致了ROW LOCK衝突的問題,使用perf insight問題畢現。

pgbench -M prepared -n -r -P 1 -c 640 -j 640 -T 300       
postgres=#     
    
select     
  query,    
  coalesce(waiting, 'CPU_TIME') waiting,    
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)   -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 06:38:20+08'   -- 問題時間點    
group by 1,2     
order by 1,cnt desc;    
    
    
                                       query                                                 |         waiting          |  cnt        
-------------------------------------------------------------------------------------------------------+--------------------------+-------      
 BEGIN;                                                                                                | Lock_transactionid       |   0.3      
 BEGIN;                                                                                                | Lock_tuple               |   0.3      
 BEGIN;                                                                                                | LWLock_lock_manager      |   0.1      
 END;                                                                                                  | IPC_ProcArrayGroupUpdate |  29.5      
 END;                                                                                                  | CPU_TIME                 |  14.1      
 END;                                                                                                  | Lock_transactionid       |    13      
 END;                                                                                                  | Client_ClientRead        |   8.4      
 END;                                                                                                  | Lock_tuple               |   8.1      
 END;                                                                                                  | LWLock_lock_manager      |     3      
 END;                                                                                                  | LWLock_ProcArrayLock     |   0.4      
 END;                                                                                                  | LWLock_buffer_content    |   0.3      
 END;                                                                                                  | IPC_ClogGroupUpdate      |   0.1      
 END;                                                                                                  | LWLock_wal_insert        |   0.1      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | IPC_ProcArrayGroupUpdate |   1.3      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | CPU_TIME                 |   0.4      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | Lock_transactionid       |   0.3      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | Lock_tuple               |   0.2      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | Client_ClientRead        |   0.2      
 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP); | LWLock_lock_manager      |   0.1      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | Lock_tuple               |   0.9      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | Lock_transactionid       |   0.9      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | IPC_ProcArrayGroupUpdate |   0.4      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | Client_ClientRead        |   0.3      
 SELECT abalance FROM pgbench_accounts WHERE aid = $1;                                                 | CPU_TIME                 |   0.1      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | Lock_transactionid       |   1.7      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | IPC_ProcArrayGroupUpdate |   1.4      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | Lock_tuple               |   0.9      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | LWLock_lock_manager      |   0.1      
 UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;                                  | CPU_TIME                 |   0.1      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | Lock_transactionid       | 161.5  # 突出問題在這裡      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | IPC_ProcArrayGroupUpdate |  27.2      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | Lock_tuple               |  27.2      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | LWLock_lock_manager      |  19.6      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | CPU_TIME                 |  12.3      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | Client_ClientRead        |     4      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | LWLock_buffer_content    |   3.3      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | LWLock_ProcArrayLock     |   0.3      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | LWLock_wal_insert        |   0.1      
 UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2;                                  | IPC_ClogGroupUpdate      |   0.1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | Lock_transactionid       | 178.4  # 突出問題在這裡      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | Lock_tuple               |  83.7  # 突出問題在這裡      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | CPU_TIME                 |   5.6      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | IPC_ProcArrayGroupUpdate |   5.3      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | LWLock_lock_manager      |   3.8      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | Client_ClientRead        |     2      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | LWLock_ProcArrayLock     |   0.1      
 UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2;                                   | LWLock_buffer_content    |   0.1      
(47 rows)      
postgres=#     
    
select     
  coalesce(waiting, 'CPU_TIME') waiting,    
  count(*)/10::float8 cnt     
from perf_insight     
where     
  to_timestamp((extract(epoch from ts))::int8/10*10)  -- 以10秒統計粒度的圖形為例    
  ='2019-01-26 06:38:20+08'   -- 問題時間點    
group by 1     
order by cnt desc;    
    
    
         waiting          |  cnt      
--------------------------+-------    
 Lock_transactionid       | 356.1    
 Lock_tuple               | 121.3    
 IPC_ProcArrayGroupUpdate |  65.1    
 CPU_TIME                 |  32.6    
 LWLock_lock_manager      |  26.7    
 Client_ClientRead        |  14.9    
 LWLock_buffer_content    |   3.7    
 LWLock_ProcArrayLock     |   0.8    
 LWLock_wal_insert        |   0.2    
 IPC_ClogGroupUpdate      |   0.2    
(10 rows)    

其他壓測場景使用perf insight發現問題的例子

1、批量數據寫入,BLOCK extend或wal insert lock瓶頸,或pglz壓縮瓶頸。

create table test(id int, info text default repeat(md5(random()::text),1000));    
    
    
vi test.sql    
insert into test(id) select generate_series(1,10);    
    
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 300    
postgres=#     
select     
  to_timestamp((extract(epoch from ts))::int8/10*10) ts,     
  coalesce(waiting, 'CPU_TIME') waiting,     
  count(*)/10::float8 cnt     
from perf_insight     
group by 1,2     
order by 1,cnt desc;    
    
    
           ts           |         waiting          | cnt      
------------------------+--------------------------+------    
 2019-01-26 10:28:50+08 | IO_DataFileExtend        |  0.1    
 2019-01-26 10:29:00+08 | CPU_TIME                 |   50    
 2019-01-26 10:29:00+08 | Lock_extend              | 11.9  -- 擴展數據文件    
 2019-01-26 10:29:00+08 | Client_ClientRead        |  0.3    
 2019-01-26 10:29:00+08 | IO_DataFileExtend        |  0.2    
 2019-01-26 10:29:00+08 | LWLock_lock_manager      |  0.1    
 2019-01-26 10:29:10+08 | CPU_TIME                 | 47.1    
 2019-01-26 10:29:10+08 | Lock_extend              | 13.5    
 2019-01-26 10:29:10+08 | Client_ClientRead        |  0.7    
 2019-01-26 10:29:10+08 | IO_DataFileExtend        |  0.3    
 2019-01-26 10:29:10+08 | LWLock_buffer_content    |  0.2    
 2019-01-26 10:29:10+08 | LWLock_lock_manager      |  0.1    
 2019-01-26 10:29:20+08 | CPU_TIME                 | 54.5    
 2019-01-26 10:29:20+08 | Lock_extend              |  6.7    
 2019-01-26 10:29:20+08 | Client_ClientRead        |  0.2    
 2019-01-26 10:29:20+08 | IO_DataFileExtend        |  0.1    
 2019-01-26 10:29:30+08 | CPU_TIME                 | 61.9  -- CPU,通過perf top來看是 pglz接口的瓶頸(pglz_compress)     
 2019-01-26 10:29:30+08 | Client_ClientRead        |  0.2    
 2019-01-26 10:29:40+08 | CPU_TIME                 | 30.9    
 2019-01-26 10:29:40+08 | LWLock_wal_insert        |  0.2    
 2019-01-26 10:29:40+08 | Client_ClientRead        |  0.1    
(28 rows)    

所以上面這個問題,如果改成不壓縮,那麼瓶頸就會變成其他的:

alter table test alter COLUMN info set storage external;    
    
    
postgres=# \d+ test    
                                                  Table "public.test"    
 Column |  Type   | Collation | Nullable |               Default               | Storage  | Stats target | Description     
--------+---------+-----------+----------+-------------------------------------+----------+--------------+-------------    
 id     | integer |           |          |                                     | plain    |              |     
 info   | text    |           |          | repeat(md5((random())::text), 1000) | external |              |     

瓶頸就會變成其他的:

 2019-01-26 10:33:50+08 | Lock_extend              | 43.2    
 2019-01-26 10:33:50+08 | LWLock_buffer_content    | 14.8    
 2019-01-26 10:33:50+08 | CPU_TIME                 |  4.6    
 2019-01-26 10:33:50+08 | LWLock_lock_manager      |  0.5    
 2019-01-26 10:33:50+08 | LWLock_wal_insert        |  0.4    
 2019-01-26 10:33:50+08 | IO_DataFileExtend        |  0.4    
 2019-01-26 10:33:50+08 | Client_ClientRead        |  0.1    
 2019-01-26 10:34:00+08 | Lock_extend              | 55.6    
 2019-01-26 10:34:00+08 | LWLock_buffer_content    |  6.3    
 2019-01-26 10:34:00+08 | CPU_TIME                 |  1.2    
 2019-01-26 10:34:00+08 | IO_DataFileExtend        |  0.8    
 2019-01-26 10:34:00+08 | LWLock_wal_insert        |  0.1    
 2019-01-26 10:34:10+08 | Lock_extend              |  6.3    
 2019-01-26 10:34:10+08 | LWLock_buffer_content    |  5.8    
 2019-01-26 10:34:10+08 | CPU_TIME                 |  0.7    

因此治本的方法是提供更好的壓縮接口,這也是PG 12的版本正在改進的:

[《[未完待續] PostgreSQL 開放壓縮接口 與 lz4壓縮插件》](https://github.com/digoal/blog/blob/master/201803/20180315_02.md)

[《[未完待續] PostgreSQL zstd 壓縮算法 插件》](https://github.com/digoal/blog/blob/master/201803/20180315_01.md)

2、秒殺,單條UPDATE。行鎖瓶頸。

create table t_hot (id int primary key, cnt int8);    
insert into t_hot values (1,0);    
    
vi test.sql    
update t_hot set cnt=cnt+1 where id=1;    
    
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 300    
    
    
postgres=#     
select     
  to_timestamp((extract(epoch from ts))::int8/10*10) ts,     
  coalesce(waiting, 'CPU_TIME') waiting,     
  count(*)/10::float8 cnt     
from perf_insight     
group by 1,2     
order by 1,cnt desc;    
    
 2019-01-26 10:37:50+08 | Lock_tuple               | 29.6  -- 瓶頸為行鎖衝突    
 2019-01-26 10:37:50+08 | LWLock_lock_manager      | 11.4  -- 伴隨熱點塊    
 2019-01-26 10:37:50+08 | LWLock_buffer_content    |  8.4    
 2019-01-26 10:37:50+08 | Lock_transactionid       |  7.6    
 2019-01-26 10:37:50+08 | CPU_TIME                 |  6.5    
 2019-01-26 10:37:50+08 | Client_ClientRead        |  0.2    
 2019-01-26 10:38:00+08 | Lock_tuple               | 29.2  -- 瓶頸為行鎖衝突    
 2019-01-26 10:38:00+08 | LWLock_buffer_content    | 15.6  -- 伴隨熱點塊    
 2019-01-26 10:38:00+08 | CPU_TIME                 |  7.9    
 2019-01-26 10:38:00+08 | LWLock_lock_manager      |  7.2    
 2019-01-26 10:38:00+08 | Lock_transactionid       |  3.7    

秒殺的場景,優化方法

《PostgreSQL 秒殺4種方法 - 增加 批量流式加減庫存 方法》

《HTAP數據庫 PostgreSQL 場景與性能測試之 30 - (OLTP) 秒殺 - 高併發單點更新》

《聊一聊雙十一背後的技術 - 不一樣的秒殺技術, 裸秒》

《PostgreSQL 秒殺場景優化》

3、未優化SQL,全表掃描filter,CPU time瓶頸。

postgres=# create table t_bad (id int, info text);    
CREATE TABLE    
postgres=# insert into t_bad select generate_series(1,10000), md5(random()::Text);    
INSERT 0 10000    
    
vi test.sql    
\set id random(1,10000)    
select * from t_bad where id=:id;    
    
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 300    

瓶頸

postgres=#     
select     
  to_timestamp((extract(epoch from ts))::int8/10*10) ts,     
  coalesce(waiting, 'CPU_TIME') waiting,     
  count(*)/10::float8 cnt     
from perf_insight     
group by 1,2     
order by 1,cnt desc;    
    
 2019-01-26 10:41:40+08 | CPU_TIME                 | 61.3    
 2019-01-26 10:41:40+08 | Client_ClientRead        |  0.9    
 2019-01-26 10:41:50+08 | CPU_TIME                 | 61.7    
 2019-01-26 10:41:50+08 | Client_ClientRead        |  0.1    
 2019-01-26 10:42:00+08 | CPU_TIME                 | 60.7    
 2019-01-26 10:42:00+08 | Client_ClientRead        |  0.5    

perf insight 的基準線

如果要設置一個基準線,用於報警。那麼:

1、基準線跟QPS沒什麼關係。

2、基準線跟avg active sessions有莫大關係。avg active sessions大於實例CPU核數時,說明有性能問題。

perf insight 不是萬能的

perf insight 發現當時的問題是非常迅速的。

神醫華佗說,不治已病治未病才是最高境界,perf insight實際上是發現已病,而未病是發現不了的。

未病還是需要對引擎的深刻理解和豐富的經驗積累。

例如:

1、年齡

2、FREEZE風暴

3、sequence耗盡

4、索引推薦

5、膨脹

6、安全風險

7、不合理索引

8、增長趨勢

9、碎片

10、分區建議

11、冷熱分離建議

12、TOP SQL診斷與優化

13、擴容(容量、計算資源、IO、內存...)建議

14、分片建議

15、架構優化建議

等。

除此之外,perf insight對於這類情況也是發現不了的:

1、long query (waiting (ddl, block one session)),當long query比較少,總體avg active session低於基準水位時,實際上long query的問題就無法暴露。

然而long query是有一些潛在問題的,例如可能導致膨脹。

perf insight + 經驗型監控、診斷,可以使得你的數據庫監測系統更加強壯。

其他知識點、內核需改進點

1、會話ID,使用backend的啟動時間,backend pid兩者結合,就可以作為PG數據庫的唯一session id。

有了session id,就可以基於SESSION維度進行性能診斷和可視化展示。

select extract(epoch from backend_start)||'.'||pid as sessid     
from pg_stat_activity ;    
    
         sessid             
------------------------    
 1547978042.41326.13447    
 1547978042.41407.13450    

2、對於未使用綁定變量的SQL,要做SQL層的統計透視,就會比較悲劇了,因為只要輸入的變量不同在pg_stat_activity的query中看起來都不一樣,所以為了更好的統計展示,可能需要內核層面優化。

可以借鑑pg_stat_statements的代碼進行內核的修改,pg_stat_statements裡面是做了變量替換處理的。(即使是未使用綁定變量的語句)

contrib/pg_stat_statements/pg_stat_statements.c

如果不想改內核,或者你可以等PG發佈這個PATCH,可能12會發布。

《PostgreSQL 11 preview - 強制auto prepared statment開關(自動化plan cache)(類似Oracle cursor_sharing force)》

3、udf調用,使用pg_stat_activity打點的方法,無法獲取到當前UDF裡面調用的SQL是哪個,所以對於大量使用UDF的用戶來說,perf insight當前的方案,可能無法鑽取到UDF裡面的SQL瓶頸在哪裡。

這種情況可以考慮使用AWR,perf,或者plprofile。

《PostgreSQL 函數調試、診斷、優化 & auto_explain & plprofiler》

《PostgreSQL 源碼性能診斷(perf profiling)指南 - 珍藏級》

《PostgreSQL 代碼性能診斷之 - OProfile & Systemtap》

4、PostgreSQL 的兼容oracle商用版(阿里雲PPAS),內置AWR功能,waiting event的粒度更細,不需要人為打點,可以生成非常體系化的報告,歡迎使用。

《PostgreSQL AWR報告(for 阿里雲ApsaraDB PgSQL)》

5、如果你需要對很多PG實例實施perf insight,並且想將perf insight的打點採樣存儲到一個大的PG數據庫(例如citus)中,由於我們查詢都是按單個instance來查詢的,那麼就要注意IO放大的問題。

可以使用udf,自動切分INSTANCE的方法。另一方面由於時間字段遞增,與HEAP存儲順序線性相關,可以使用brin時間區間索引,解決ts字段btree索引大的問題。知識點如下:

《PostgreSQL 時序最佳實踐 - 證券交易系統數據庫設計 - 阿里雲RDS PostgreSQL最佳實踐》

《PostgreSQL 在鐵老大訂單系統中的schemaless設計和性能壓測》

6、如果將perf insight數據存在當前數據庫中,需要耗費多少空間呢?

正常情況下,一次打點採集到的active session記錄是很少的(通常小於CPU核數,甚至是0)。

較壞情況,例如每次打點都採集到60條記錄,每隔5秒採集一次,30天大概3000萬條記錄,每天一個分區,每天才100萬條記錄,完全可以直接保存在本地。

參考

[《[未完待續] PostgreSQL 一鍵診斷項 - 珍藏級》](https://github.com/digoal/blog/blob/master/201806/20180613_05.md)

《PostgreSQL 實時健康監控 大屏 - 低頻指標 - 珍藏級》

《PostgreSQL 實時健康監控 大屏 - 高頻指標(服務器) - 珍藏級》

《PostgreSQL 實時健康監控 大屏 - 高頻指標 - 珍藏級》

《PostgreSQL pgmetrics - 多版本、健康監控指標採集、報告》

《PostgreSQL pg_top pgcenter - 實時top類工具》

《PostgreSQL 如何查找TOP SQL (例如IO消耗最高的SQL) (包含SQL優化內容) - 珍藏級》

《PostgreSQL、Greenplum 日常監控 和 維護任務 - 最佳實踐》

《PostgreSQL 鎖等待監控 珍藏級SQL - 誰堵塞了誰》

https://sourceforge.net/projects/pgstatsinfo/

https://github.com/cybertec-postgresql/pgwatch2

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

https://github.com/postgrespro/pg_wait_sampling

免費領取阿里雲RDS PostgreSQL實例、ECS虛擬機

大量阿里雲PG解決方案: 任意維度實時圈人; 時序數據實時處理; 時間、空間、業務 多維數據實時透視; 獨立事件相關性分析; 海量關係實時圖式搜索; 社交業務案例; 流式數據實時處理案例; 物聯網; 全文檢索; 模糊、正則查詢案例; 圖像識別; 向量相似檢索; 數據清洗、採樣、脫敏、批處理、合併; GIS 地理信息空間數據應用; 金融業務; 異步消息應用案例; 海量數據 冷熱分離; 倒排索引案例; 海量數據OLAP處理應用;

德哥的 / digoal's PostgreSQL文章入口 - 努力做成PG資源最豐富的個人blog

德哥的微信 / digoal's wechat

Leave a Reply

Your email address will not be published. Required fields are marked *